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Abstract

Itdcrcrttcc  i s  ittcvitoble becauxe  nuul@ctuting  cxaet{y
cquollmrts is known to be inipossible. I~ur[}tcttnore, the
specijcatim of toletzmces is ml integralpar[  ojproduct
dcsigu since tolerances dircctlyoffcct  ttleassetnblcibi lity
frinctiolmlity, rtlotll(acllirol)ility, ondcost cflectivctlessoj
o procluct. Iu lhis popec we present slrltisticol tolerance
and clearance atl{ilysisf orth ussetnbly. Io[cranccs  work
ogaiust t}l~ msendthbility  o f  a  prodlict  sinm  they ccitI
l,rzj[)og~)t{,  {ittd{icclittili late in thepr-odlict, making it more
difjicult or intpossibk  to ossetuble. Clcoronces,  howcve<
work forthc os.vFltzt~latlility sittct’ they con be lisedto  cot~l-
{)ctis[itc forto[crcittccs.  llte/)oscs ofi)cirts ittattl~sLYcttttjly
ttl{iy{~c {idjiisted wlit)lit~ thepertnitte dclearances  toasseni-
bic the ports. Monte-Carlo tnethod is used itl the malysis,
with Gaussion  distribution, Gaussirm-Sigtnoid  distribu-
tion, {ind C}li-Squcirc error rcductiou scheme to {ipiJroxi -
nuite to[eratlces and clmronces.  l’hen, a l g o r i t h m s  to
cottlplite the propagation of tolerances and clecirattccs
arcproprrsed.  Ourproposed  workisc xpectedtottwk the
fol[olt,in~ cotltriblitions:  (i) to help the desigucrs to OaIu -
{itept-odlict.~foro.rscttddabi lity, (ii) to provide o newpcr-
s~)cctii~c to tolcratlcc  problems,  and (iii) to ptovide  o
tolcr{itlce molysis tool which can be incorpor<itd  into a
CA l) or solid rnodcling  systcrtl,

1: lntroducliou

“J’bc specification of tolmrncm  is an integral parl of a
product de.sig,n since tolerances directly affccl the assclll-
b]al>ility, functionality, and manufactu[abili~y  of a pIocluct,
MoJcwvcr,  to]mancc  is inevitable bccausc  lllanufficlLlring
c.xactly equal parts is known to bc ilnpossiblc  [ 1].

Although they arc small as cojlllJamt with pm L
ditncnsions, to]cranccs  can propiigatc and accumulate in
an asscrnb]  y affcc[i ng tbc procluc( asscmblabilit y. 1 ‘or
cxarIllIle,  an assmnbly  with six nominal palls is shown in
}’ig. 1 (a). It may fail to asserllble  if SOIIIC  Inanufach]Icd
pm 1s deviate fI 0111 tlw,ir nominal shape. I ‘ig. 1 (b) sliows
Illat two pegs of 1’1 deviate ftoltl tbc.ir ncm]inal  pose: one.
Ilas a slnall rotation deviation and tbc otbe~ OIIC hm a small
tlanslatic)n dcviatioll.  ‘lhc assclllbly  fai ls  to assemble
because lt~csc ctcviations propagate in tbc assc~llb]y, and
Iilzikc Smnc pals to intc.rscci,  e.g., 1’2 inm sects will] }’4
and 1’6, and 1’4 intcmects  with P5 anti 116,
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Figure 1: An assembly with six parts.

(’lcalancc.s  can bc Lmci to coIIIpcnsatc  for tolerances.
CIlcarance is a fmc, adjustable space bctwccrl two nlating
features, wtlicb  arc surfaces of parls that play a fLlnctional
IOIC in an asscltlb]y.  ‘J’his  free Iliay bc used for adjusting
ttlc part lIoscs. I;or cxarnplc, Fig. 1 (c) shows that aa
asscl]lbly is designccl with c.lcaranccs.  ‘J’his awcnih]y may
bc. assembled wit}] tolerance(i  1’1 bccausc the c]carances
can bc useci tc] acijust tllc pcmcs of paI-ts ill tiIc assc.rnbly  to
conlpcusate  t}w deviations causccl by ttlc tolelanccs, as
shown in I;ig. 1 ((i). Note that }’1 in I;ig. 1 (b) is just onc
feasible instance of shafw clcviations  of }’1. Iior  cxarnplc, a
s~cg fcatu[c of 1’1 is allowed to have any deviation within
ttm tolelance specification, as shown in l;ig. 2. l’ig. 2(a)
shows that tim fc.ature ims position to]crallcc. The meaning
Of thC poSitiOIl  tolCrlIIICC iS that tllC aXIS  of tllC fCa[Lll”C  iS
allowed to be anywhere within the tolcr ancc mrlc, as
sliown in l~ig. 2(b). (Refer to [2,3] for more cietails of tol-
erance  spccifica[ions.)

I’IIC. goal d titis work is to study tbc cft”ect of tolcr-
allccs anti clcalances on the asscnlb]ability  of a product.
‘J’llat is, wtlat is tiw assclnblrri>iiily, or tile probability of
sLlcccssful  assentb]y,  of a product uncicI tile given toler-
ances allci clcatanccs? “I”lIc asselllblability of a prociLlct is
an irnpcwhnt  issue it) design because it is directly rClil(C(i

to  tlIe. cost an(i I)locl  Llctivity.
in this ww k, tolcrancc is rc})icscn{c.cl  by an cllipsoi(i,

witlt Gaussian disll-ibutionj  and clcaIaIIcc is ]cprcsc.n~c(i by
a norllinal  e.llipsoici and a range, “1’IIc nolninal cliipsoid
rcprcscnts  a n approxirnaticm of nominal  clcarancc.
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Figure 2: Position tolerance of a peg in 2-D.

Whereas the range rcpl meats  the permitted s[alist ical vari-
ability of the norli inal clcarancc, Monte-carlo mctlloci is
uscc] to Silau]atc the. tolerances of mating features. q’hen,
Gaussian distribution and Clli-Square  enor  reduction
SCIICIIIC  alc used to approximate. tllc tolcranccs;  and ~7aus-
sian-Siglnoicl disti-ibution  and (lhi-Square cr{or reduction
schc.rlic ale. used to apprc)xirllatc  tbc clc.arances. I;or the
analysis, following assumptions arc made: I’arts arc
assu]ncci to bc ~igid and CIO not dc. fore) dLlling asscrllb]y;
clcarancc bctwccn  lnating features are mro or larger;
exactly two IIlating fcatules arc used in nlating; and the
asscn]tdy  is assunlcd  to have no in(crsection bctwc,:n
nmainal partsin  an assembly.

2: Rclalcd works

Whitney and Gilbc~t [4] rcprc.scntcd  tolerance byatrans-
folln lnntrix in kinematic paralncters to bc used as input to
a tolc.rancc  analysis tool. Ily using tbc Chi-Squ are cr[or
rcductirm scbcIIIc, they minirniz,cd the probability Lmor
between the analytic solution of a (iaussiaa  probability
dcnsi(y  fL]nctiorl  and the simulalcd solution from Montc-
~arlosilllulation.  A possible rcprcscrl[ation forc]earancc
bctwccn  two mating features was pmposcd  briefly in
tclllis c) fcorl(iitiorlai  val-iancc. }Iowcvcr,  rlcitl]er ttlcrcI>rc-
Scntatioll  nor tbc corllilutation fo~c.ieal-ancc was proviclcci.
III l)al [icular,  clearance was dcscribcd  in the context of tol-
mincc  propagatior~  treating it as to]crancc (uncertainty.)
l;ostcr [2] anti ANSI Y14.5M [3] describe gcolnctlic
clirtlc~~si(-)riirlg  anti toicrancing for designing ami manufac-
tutins  colnponcnts of a mccharlicai  products. Rc.qLiiclta
[5,C] J)I Oposcd a tc)lcrancc zone rcprcscntation  in an cffw 1
to intcgralc it with solid mode]crs.  ‘J’his rclmcsc.nta(ior)
uses tolcrancc zones to check whether (tic appropriate por-
tions of lhc part boundary lic Wittlin the zones.

lljo!kc [l]prc>l>oscd  c)rleciilllcrlsi()  t]alstatistical  tc)lcr-
ancc anaiysis based on the function aii[y of a prociuct,  IIis
objcctivc was to dclivc the tolcrancc  chain ccluation for a
suill dirllcnsiorl, an irlliwrtar~t  dimension in a Imociuct.
‘1’ilcn, tbc SUIII  ciilllcrlsiorl was ctlcckcd whether or not it
IllCt tllC functiorla]ity Critc,ria, e.g., a c]caranCc [>ctwcer)
two sutfaccs jnust bc larger than Zero ancl lCSS tl]an sornc
Iittlit. ‘1’rcacy and ct al. [7], Wang anti Ozsoy [8], and
Socic]lmrg  [9] iml~lc.rncrltcd a data structure, an algorithm
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Figure 3: Feature graph of six part assembly.

foI gcnclaling  the tolcrancc  chain, an(i a conlimtcl intcl -
facc of Bjortw’s  approach.

SU and I,ec [10] modeled tolerances using differential
t(ansforjl]s  and charactc.ri T,cd thcrn using means and cova-
riances. I’hcy proposed an analytical mettlod for tolerance
propagations. lJowcvcr,  the method did not consider clcar-
rrltcc, and the approach was based on the pose uncertainty
of an otjcct  during  an asscrnb]y  task. Shalon  anti ct ai. [ 11 ]
computed the. cxpcc[cd worst-case location c)f a fca[ur-c  in
an assembly using transforjnaticm r]latl ix lllLlltil~licatiorls.
Grosslllan [ 12] used Monte ~arlo IIw(hod  to simula[e
IImnufactulirlg  imoccsscs,  wlmc  four ho]cs arc Ciriil C(i into
a rectangular box. ~’hen, an assembly process was sirllu-
latcd whcr-c  a lid with four }101cs was at(acbc(i  to a box
with four ho]cs, so that the four screws could bc inscrtccl.
‘l’he. nulnhcr of successful assemblies was clctcrrllincd
based on whether all screw holes were aligned wittiirl prc-
dcfincci limits.

3: Nqnvsmtation

‘l’his  sccticm dcsc[ibcs  i n  cictail tolc]-ancc an(i clcarancc
rcprcscntatiorls  and computations invoivc(i in approximati-
ng the tolerances and clearances. An asscn~h]y  nlode] is
iIISO dc. scribcci blicfiy,

3.1: Assctab]y  rr]odeling by a featarc graph

A n  asscrnbly is rllocic.leci  by a fcatuie ~iai)l] (IKi.)  IJG
dcsclibcs  both the local relations betwecrl a part and its
rllating fcatuics,  and the global lnating ~cl:iticms between
tile park in an asscmbiy. In an asscrnbly, pal ts are lnate.ci
throllgh  rllating fctrturcs. A nlating feature is a feature (or
surface) of a parl ttlat plays a functiorlal xolc such as nlat-
ing, I;(; k Sillli]ar to Inating  graph [13],  but };(3 includes
tolc]aace anti clearance attributes.

}G is dcfrncd by a SC( of noclcs arid a set of cclgcs:
lG= (N,IL).  ‘JIICIC alc tillcc t y p e s  c)f no(ics: I;-nocic,  M-
nocic, anti I’-no(ie.  }(-nocic  reimscnts  a r[lating feature, anti
has an associa[cci toic[ancc  cliiijsoici.  M-nocic  rciwcscnts a
pair of mating features, and has an associated clcatancc
c]lipsoicl. Note that two 1~-nodes reiwcscnt onc M-IIocic. 1~-
nocic represents a ]ocal coorciinatc  frarllc of a I]arl (e.g.,
datum refcrencc  fralt)c. ) An edge rcp[-csel]ts  the rc]a[ion
bctwccn I’-IIo(ic  and I;-node, and has tllc. awociatcci trans-
fmrnation rl]atrix, In the pictures, 1~-nocic is (icnotcd  by a
wilitc or glay cir-clc, M-nocic is cicnotc.ci by a glay cilclc
irlsidc a white, circle, and ])-node is cienotc(l [)y a b]ack Cir--
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Figure 4: Pose tolerance and tolerance ellipsoid.

CIC. lJOI cxanlple, I(G of six pat-l assclllbly in };ig, 1 is
slmwn in l;ig. 3.

3.2: ‘] ’o]crancc representation

ANSI Y14.5M [2,3] defines various types of geoliictric
tolc]anm.s,  e.g., fol-[n, location, orientaticm,  profile, and
runout,  to rci}lcse.nt  tolcrancc of a feature. ‘1’here arc two
ty[)cs of fcatulcs: related and individual. ‘lolcrances  of
nlos( related featurcscan  bcrcprcscntcd  by ellipsoids [4].
Related features arc features which relate to a datum, or
ctatulns,  in location, orientation, runout, and profile. ~’hc
tolmmcc  of a related mating fe.aturc affects the pc~sc of the
featLlrc, and is called pose Kderatlcc. Where as, individual
fcalures arc fca(ulm which relate to perfect gcomctl-ic
counterparts of thcmsclvcs as the desired for[ns,  and no
datLllIl  isuscd. ‘J’hctokrancc  of an individLlal  mating fca-
tumaffcctsc  lcarancc, and iscallcd  dit)tcf~siott tolerance.

‘1’he  pose tolcrancc (or tolcrancc) of a feature is rcprc-
scntcd by an c]lipsoicl with its cc.ntcr located at the origin
of the non~inril coordinate frame of the feature. Although
there exisl other types of distribLlticms  for IlmnLlfacturing
proccsscs, c.g, rectangular, beta, etc., GaLlssian distribu-
tion is assLltld  for pose and dimension tolerances bccaLisc
the specific lnanLlfacturing  plc)ccsses  arc not known at a
design stage, nlany nlanufacturing proccsscs  }Iavc rGaLlss-
ian disll-it)Lltion [9], and central limit thcorcn]  [9,14]  can be
applied to tolerance propagation.

‘1’hc cltipsoid  is an approxilllation  of real tolerance
clcscribcd in kincrl~a[ic parameters. l~or cxarnp]c., the pcg
feature shown in l;ig. 4(a) has pc>sition  tole.rancc of 0.02 in
dialnctcr.  ‘J’hc  nlcaning of tllc position tolerance [2,3] is
t}lat the axis of the pcg is al]owccl to reside. in the tolerance
ZO1)C  dc.fined by a rectangular box as slmwn in I;ig. 4(c),
“1’his illlplic.s that tlvs coordinate frame attached tc) the axis
of the peg,, as shown in };ig. 4(b), can tratlslatc ~ltaxill~un~
of fO.01 in x-axis and rotate maximunl  of~().014  about Y-
axis (tllc axis otltmgonal  to the paper), as strewn in IFig.
4(d). ‘1’tlis area is callccl Iolmmcc  volL]mc,  and shows that
x and O pammctcrs arc dc.pcndcot.  l~inally, tl)is tolc.rancc.
volume is rcprcscnted  byan cllipsc that ol~tiTtlallyai~t>tc)x-
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Figure 5: Simulated and analytic solutions,

imatcs the distlibLltion  of the tolcr’ancc volLlnlc, as SIIOWI1
in I;ig. 4(e).  ‘1’hc  op(inli?ation  facto[, ~= 0.95, is obtained
from a silnulation  result Llsing 5000 larldornly and nor-
lnally gcncratcd  samples using the j)rocess dcscribcd
below. ‘i’hc silllulatcd solution and the analytic solLltion arc
shown in l~igs. 5(a) and (b), rcslwctivcly.

‘1’he  conlpL1taticJn  pl-occss of a tolerance ellipsoid is as
follows: Wc awurnc that the tolerance ha~ Gaussian distri-
bution, and silnulatc the tolmancc usins Monte-carlo
Method [1 S]. First, randomly and normally p,cncratc a
I)oint (xi) On the x-axis within the lnaxirllLml  boLlndary
(f O.O]). ‘1’hen, randomly and normally gcncratc  a point
(Oi) on tllc O-axis  within the limit at xi. ‘1’}Ic  random sarnplc
(xi,Oi)  is considered as an instance of orlc Monte-(;arlo
sill~L)lation.  Rer]cat thcranclom gene.[atic]~lNtiI[]cs. l’his is
a silnulatcd distribution of the. pose tolcran cc. Clauss ian
density function with G, whcrco is the standard deviation
and equals to one-third of maximum boundary limits, is
used to initially approxirllatc,  the sirl~Ltlated  density (e.g.,
CSx= 0.01/3.) ‘1’hc probability within the ~ Mr boundary of 7-
1) Gaussian distribution is 0.989 [16]. l’his initial o is opti-
IItizcd usinp, U]i-SqLlare  clmr  redLlction sctmlle., ]n t h i s
scheme, the sirnulatccl area (total density is cqLlal to one)
and ~JaLtssian  clcnsity area (Llsing f30 lilllits) alc Ilarti -
ticmccl il~to square glids. “1’hen, for all glids, SUIII tile
squares of the. diffcrcncc  bctwccn twoplol)abilities  of the
p[ id cc.ntcns, Oli-Square. erlor reclLlction schcrllc iteratively
IoLlltiplics a’s by an optimi~ation  factor, (x, Llnti] the lnini -
]IIUIn  C%i-Sq Llalc is foLtnd for SOIIIC  w ‘1’he op t imized
ellipsoid has the axis lcngtbs of tx*30.

3.3: Clcaral~cc  rc])rcscI)tatioll

~lcarance  a free, adjustable space hctwccn two mating
fcatLltcs.’l’his  s~~ace. provic\cs  adjustaLJility tolmllmscsin
a n  asscrllhly.  Wtletl noltlinal dilticnsiotls  of nlating fca-
tulcs arc used, the corlcsImnding  clearance is nolllinal.
}Iow,cvcr,  dirilcllsion tolerances of Inatil12 features can clc-
atc wuiability to tbc ]Iolninal  clca[ancc. ‘1’hc c l ea rance
bctwfccn two mating fcatLlres is rcprcsentcd by a noll~inal
cllil)soid  and arangc  with (i:tLlssiar~  clist[it)Lltic)l).  Note that
a functionality rcquil-erllcr]t  may be associa(cd  witt) clcar-
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Figure 6: Clearance between peg and hole.

arms. ‘J’lmrcforc,  clcarancc must ae.colnmoctatc function-
ality reel Llimw.mt.

A free space bc(wccn  two mating fc.atLlrcs is repr-
esented by a clcarancc zone, }k>r exan~plc, the clearance
mnc  of the pcg and hole n)ating features of 1’1 and 1’3 in
l~ig. 6(a) is shown in Iiig. 6(b). “rl’hc  axis of I}VS clcarancc
701N2 denotes the same axis of the peg, ‘1’he nominal clcal -
ancc mnc  is 0.4 by 1.0, which is the difference bctwcc.n
the non)inal diameters of the hole and peg, and the deptl]
of tllc ho]c, Since the ctialnctcrs of hole and pc.g have
ctillmsicm tolerances of iO.05,  the clearance mm in x-
axis have fl.O.l of variability. “l’his range is assumed to
have Gaussian ctist[ibution, as shown in l~ig. 6(b). From
this clearance zone and the range, clearance VOIUIIICS  can
be gcnrxatcd,  as shown in Iiig. 6(c).  g’his  distribution is
used for computing the. nominal clcarancc ellipsoid ami
llm range.

‘1’hc following algorilhm Computes the clearance
ellipsoid and tlm range of pcg and hole mating features:

AlmmIRQ
,.. .

mmmUmmlfl!mlIml
1.

2.

3.
4.

‘i. .

Randonlly  and nor]nally  gclmratc dialnctcrs,  1>0 a n d
] )h, Of hC peg atld hole., ICSpCC(iVCly.  ])p is gen~ratcd
by adcling the nominal pcg diameter ancl ~hc randc~tl~ly
and normally gcncratcd value, ‘l’P, froln  the peg’s
dirlmnsiorr  tolcrancc. ‘l; is generated using al, as the
standard deviations of peg, where ~ ?*oP is equal to the
peg’s dilncnsion tolerance. ]~h can be gemratcd in a
sin~ilar way. “l’he clcarancc 7,0nc is a ~ ectangular  area
with tlm width, W, equals to l+, - I)P,  and the hcigbt, }1,
ccluals [0 the dcptb of the hole.
calculate  ttlc clearance volume fro[n the clcarancc
7onc.,  Wlwn  the axis orientation is 7ero, tlm linli( in x-
axis is equal to i W/2. When lbc t[ansla( ion of ttlc axis
is 7eIo, the. limit in rotation, O, is W/l J using the small
angle approximation. ‘1’hc clcatancc volume has a dia-
llmnd sllapc., which shows the ctcpcndcncy  bclwccn x
and O paralnctcrs.
Gcnclatc  N clcarancc volumes from steps 1 and 2.
[icrmatc M oniforlnly  distribLltcd salnp]cs, Sc, inside a
squal c. alca which can cover the largest cleat ancc vol -
Url)c.
l~or (McI]  clca~ancc volurnc  Vi, for i, 1,N, collect Si L
S,. wtlic}l intersect Vi. ‘ll)is  collection Of Si’S fOIlll S a
fl:it-tol)  s}mpc clistribulion. “1’110 flat-toI~ area corJc-
sponds to tbc ]ninin~uln  cle.aiancc VOILJIHC. (See l~ig.
6(C).)
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Figure 7: Clearance distributions.

6 .  Using Ciaussian-Sigmoid  filter nlctbod, calculalc t h e
nominal c]carancc  ellipsoid and its ransc. ~’tlis step is
discussed in next scc.tion in detail.

4: Clearance computation

This section shows the clctails of tllc cc)t[lputation process
for c.alculaling  the nominal clearance ellipsoid and the
range florn  a sirnlllated solution of clealancc.

4.1: Gaussian-Sigrnoid filter

A simulated solution is a~y)loxilllatect by an analytic solu-
tion, CiaLlssiarl-Signloid distribution. “1’hc sil(lulated solu-
tion of clcarancc has a flat-top bell Stlii[)c, as shown ill Fig.
7 by a dotted line; and an analytic  solution will approxi-
mate the shape, as shown in the flp,L)rc. Sigyoid  fLlnction is
shown irl equation (1).

‘(n ‘2[-1+:-y/7-;l ‘1)
When, Y= G(X,),  whc]c G(A’)  is a Gaussian probability den-
sity function (2),

- :X71’- ‘x
G(X) = -- l.— e (?)

(2n)-%1”2
ttw equation (]) bccorncs ~aussian-siglnoici  density fLlnC-
tion. I’his  analytic solution has a shape sirni]ar  to a clcar -
ancc clistri bution. ‘I’wo paralncters,  X and I; in C]auss ian -
Sig,r[wid funcLion contlol the shape. ‘1’hcrefmc,  op[iillal
values of these paraltlctms  should provide an optllllal
al)lmxinlalion of a silnulatcd  soluticm by an analytic solu-
tiori.

“l’tic covariancc  lnatrix, X, of a silnulate.d  solution is
computed Llsing equation (3),

h!, . .

X [l) ’j’ ‘f”j)
~,~=1

Al

(3)

wllcrc M is tllc nurlltwr  of clearance sarlll)lcs  and ~Jli is the
it,) satll~~le. We. assurllc  that the nlcan is al tllc origin  of a
coordinate flatilc. Note. that X lnay not bc a diagonal
]Ilattixl  ]Ilcarliljg ttlat tt]c matlix has Iolationa! COIIIIK.
ncnts. IIowcvcr,  we can always colnputc  tllc cigen valLm,
A, and m ltm~onal cigcn vecto[s, 1< whiclt con espond  to
tlw diag,onal IIlatrix ami the rotalion nia[t ix of >;, rcspcc-



tivcly, or X = VA~  [1 7]. Note that throughoLlt  this paper,
wc will assume that X is a diagonal matrix, unless stated
otherwise.. I’his X is used as an initial covat iance. matl ix in
(iatlssiiiT1-Sigrlloid  fLlnction  (1).

‘1’he flat-toj) surface can be controlled by adjusting
parallmtcr  ‘1’ in Siglnoid-Gaussian  function. ‘1’ controls the.
slcrlm clf the SigInoid  curve, which, in turn, controls tllc
a[ca of the flat-top surface of Gaussian-Siginoid  distribu-
tion. Optin]al “1’ ~)lovidcs  an analytic fiat-top surface. that
bcs( fits an simulated flat-top surface. ‘1’hen, X is optimized
to hcst fit the bell shape curve of a simulated solution.

4.2: optimization proms

Graclic.nt-bascci lncthod is used to optilllizc parameter ‘1’
and to find the optimizing  factor, c, for X, so that an ana-
lytic solution can best approximate a simulated solLltion.
‘l(}IC  C%i-SquaIc  (X2) ml-or ccluation  Lmd in this problclll is
tllcsull~of  tllcsqtlarec .ltorsbc  .twccr~tllc analytic  andsinl-
ulalc.d cicnsitics, as shown in cqualion  (4).

(4)X2’ i I(Ly(xi,j)-  ]’(xi,j))2

i. Ij. ]

in this cqLlation, S(Xij) is the analytical density at Xi,j, and
})(Xi,j)  is thC simulated density at Xi,j, whc.rc Xi,j is the
glid(i,j). S and 1’ arc. norInali7,cd  such that the total density
equals  one.

“1’hc norl[lali~ation  may produce, some grid densities
of a simulated solution latgcr than one. ‘1’his is duc to tbc
random generation of salnp!c.s. ‘1’0 take this case into
account, ttlc optinliz, ation c)f a flat-top sul.face begins r)y
adding the alcas of tllc gl-icts that have the ctcnsity close to
] (c. g., ~.95)or  ]aIgcr. 2'tlissL!lll,  AI.l, isaI}al>prc~xi) liaticJr~
of the aica of a simulated flat-top sLu-face. Iirom this, an
ini(ial’I’valuc  can bcconlputcd  forthc  Gaussian-Signloid
fllncti on.

l~or an initial 1’ value, the. minilnum  clli[moid,  I:,,,,n,  is
2 2

caicLllatcd flon~ AF.l.  and the ratio, P = ~ljc2.  ‘J’hc ratio
CO IIICS  fronl thcratioo fcovarianccs  ofclcalancc  sarap]cs.
l’l]is Ii,,,,l, has the area equal to AF,,. “1’hc axis lengths of I;,,,,n
arc a and ]> c)f  Af.j = nab, wkrc. C,pb an[i

1,= ~A}7/(np). ‘1’hc.n,  ‘1’ can bc col,lputcd with X=(a,()),

or X=((t,h), as shown inc.quation (5).

l’=-
-k

10g[(2/(0.998S  - 1)) -1] ,W]lcrc (5)

-:x~”z- ‘x
k = -

1
(2n) “’21>/

,/2c ‘

]Iowcvcr,  this ‘1’:ivcs  an approximation c)f the area ofa
sillllll:~tccif  l:it-tcJ1>s  LIIF~cc, andrl’c.an t]copti1ni7,cd to better
al)proxilllatc the alca with respect to tllcdcnsity  c)f the flat-
top alca. ‘1’llat is, thcdcnsityin thcflat-topatca ofa sirnu-
Iatcd solution is not flat, ‘J’llc.rcforc,  this actual density
ll~ust bc approxiluatccl  by adj Ltstin~ tlm ‘1’value.

Ol)tilllal  ‘1’ should have mininlal  cr-ror between the.
densities of simulate.d and analylic. solulions,  only in the

area of the flat-top surface of a siinula(cd solution. Chi-
Squarc crmr equation can bc. forlnu]atccl  such that tlm den-
sities outsicic the flat-top area arc zcrc) for both solutions.
(ira(iicat 6’1’ of ‘1’ can trc forlnulatc(i as shown in equation
(6).

At each iteration of the Chi-SqLlarc cr-ror reduction
schcn)c,  6’1’isadcicd toli until I’convcrgcs  (or X2 lcachcs
its prccicfincd limit sc.t by a user.) ‘1’his  ‘l&l,l is an optirlla] ‘1’
for given X.

Next, X is optinlimd to best fit the density between tbc
flat-top surface anti the. boundary of a silllulatcci solution
by an analytic soiution. When optimi7inS X, ‘l&[)r  must also
chan~c accorciingly  to prcscrvc  an optir[lai flat-top alca.
Graciicnt & for the optimization factor c of X is cornputcd.
& can bc forlnulatcd  as in cqL]aticm (7).

IXrring  ~tli-Sciuarc cr!or rcciuclion iterations, 6C is adcicci
to c. ‘J’hen, X is lnLl\tip]icd by C. l’hc density inside the flat-
top alca is kept 7cr-o since optinlization  process is pcr-
folll}cd outsicic this area,

I ‘Inally,  the. clearance ellipsoid and the ral~gc  can bc
colll~]utcd fIonl ttlc minimu!n and nlaxiltlLIIl)  ellipsoids
dclrivc(i f[ollt cqLlation (1) by let t ing S(Y)= ~,, wtlcrc Z
cqutrl to 0.9985  and 0.0015, rcsi)cctivciy. ‘1’hcse.  Z value.s
arc se.lcctcd as they closely corl cspon(i to i 3CT probability y
o f  ~)aussian  ciistribution  [  16] .  ‘J’hc cllipsoici ccluation
cicrivc(i from cqLlation (1) is shown in cciuation (8)

] . ! X7X-1X , where (8)

,2 :2,,t[(-,,,,(+;;  ))((2n,J/2,z,l/2)]

‘1 ‘Ilc nominal clcarancc  cliipsoici is the avcsagc eilipsoid of
lt]c two cliipsoi(is, i.e., axis lengths of the no]]tinal cllip-
soi(i arc tbc aver-:igc lcn~ths of the two e]iipsoids. 3’hc
I ange is the diffc.rent.c bctwccn the axis lengths of the
]Iominal anti t}Ic rllinirllurtl eiiipsoici (or nmximurll  cllip-
soici.)

‘1’hc  foiiowing exalllr)le slmws the cmnpulation  pro-
cess and results of a silnulation for [hc clcrrrancc Cliipsoi(i
and the range bctwccn two Ina{ing fcatutcs, pcg and IIOIC,
of 1’1 anti P3 shown in I;ig. (i(a). Wc ~)cr forlncci Montc-
Cartc) simulation on the ciiatrlcter ciilncnsions of the peg
allci tllc hoic with N= 50. ‘1’his  muits in 50 possibtc  clcar-
ancc 7one.s  rrnci  volu II~cs. S= 2500 rancimll and uni for[n
sam IIics wcr-c  gcncratcd  within the ~llrtxirllulll boundary,
‘1’tlcn, all saln]]lcs Si ~. S that intersect with clcarancc  vol-
url~cs are coilcctc{i, for all N clcarancc VOIUIIWS. ‘J’hc cor-
rcspon[iins  n o r  [rlali7eci cicnsily rncstl of (IIC sil[lulatcci
clcaruncc is shown in I;i.g. 8(a). ‘J’hc  cicarancc  area was
pa[titione(i into square g[ids  wit}l ]ongcr side of ttlc area
~)ar titioncd ir]to 20 gri(is.

A flat-top surface area is computcci by ackiin~ the area
of gl’idS which density is 0.95 or larger, ‘1’]lis  cicnsity mesh
fi~ure is slmwn I;ig. 8(b). ‘J’hc flat-top surface area is corll-
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Figure 8: Simulation results of clearance.

pu[ed to bc equal to 0.0873. ‘1’his value is an appl-oxin~a-
lion of the real minimum clearance of dian]ond-shape
clcarancc volume, which is 0.0692. Using this area and
covariancz ~llatrix, X, of the simulated sanlfdes, an initial ‘1’
paranmter value is calculated, ‘I’=  0.6320. Hcrwcver,  after
tllc. optimi~atim  procc.ss,  we. oh[ainecl ‘1’= 0.5855. ‘llm cor-
responding analytical Gaussian-Sign~oicl  distribution,
without optimi~,ation  on X, is sltown in I;ig. 8(c). I;inally,
ol)tilnization  is pe.rformcd  on X, and t}lc corresponding
Gaussian-Sigjnoicl  clistribution is shown in I;ig. 8(d). I:rom
ttmsc optilllimcl ‘1’ and Z, the axis lengths of [0.1 171,
0.2374] anti [0.2254, 0.4773] (where [x, 0]) are. calculated
fol ttm n~illimutll and nlaximula ellipsoids, re.spcctivcly.
‘1’hc nominal ellipsoid is calcLl]ated to have the axis
lengt})s of [0.1 762, 0.3 S73], with tlm range of [0.0592,
0.1199].

S: l’ropagations

‘lblcl-ancc pt opagation  rc.fcrs to the effect of tolerance of a
mating feature on other mating features in the assclllhly.
Siinilar]y, cle.arancc  propagation refers to [Ilc effect of
clcarancc bc.twmn  two mating features on other fcatul-cs.
la this section, wc dcscribc approactlcs  to co]aputing  the
1)1 opagations  of tolerances ancl c]e.aranccs.

5.1: Serial chain

A serial chain (S-chain) is a path without repeated nodes
ill a gl iil)}l (feature graph.) la S-chain, tolerances and
clearances IIropag,atc  from a nocic to the, next node, in tile.
ctmin;  and they can bc calculated independently. I’hc. prol)-
agation of tolet-anccs  in S-chain consists of adding the tol -
e.ranccs of a node and its next node. Note that the rotation
cc)llllwncnts  of (olcrancc  of a node may clcatc translatic)n
colllponcnts  on the next node. I’his  effect n~LIst  bc addecl.

‘1’hc operation to acid two tolerance ellipsoids is called
a sweep olmation,  or a Minkowski  acldition [1 8]. A swcc~)
operation is dcfinccl as an addition of all possible conltrina-
tions of position vectors of two lolcrance  samples. The
rcsolting  distribLltion is approxirllatcd  by C;aLlssian  ctistt i-
bLrtion using the covariancc nla[rix (3) obtained frortl the
added distl ibution. “1’hen, ~hi-SqLlarc  cr I or reduction
Sclicrnc is used to optilni7,cd the ~jaussiaa distribution.

N o w ,  ttlc rncthoci of swce.p  opcl-ation  for clc.arancc
ellipsoids is 10 generate a clcararlce distribLltim~, e.g, flat-
top bc.1] shaped. ltig. 9. illustrates this tncthod. l~irst, a
boLlr]dary  11 is gcwcratcd  from the swel)l alca of [we) I1laxi-

L- ● ---+ b--+ J

i
(b)

,- .— .-. h - - - - - - - -

!.
,.

(c) (d)

Figure 9: Clearance sweep operation.

murli clearance ellipsoids, as shown in };ig. 9(a). “1’hen,
Lrniforln  samples arc gcncratcd  inside B, as shown in Fig.
9(I)).  A ralldorll]y  gc.ne~atcd e]iipsc)ici, frorll the first CICEIr-

ance e.llipsoicl and tbc range, is placed at the origin, and a
randomly grmcrated  ellipsoid, frotl~ the second clcal ancc
cllipsoicl and ttrc range, is placed on every sarnplc, as
shown in I~ig. 9(c), l:ina]ly, ttmc sall}l)lcs whicl) IIlakc
those two random ellipsoids IC) illtcl sect arc collccte.d, as
shown by dark dots in I;ig. 9(d). ‘l’his ptoccss is repeated
IIlany tirncs,  then tllc distribLltion of tl]c collected sanlp]cs
i s  approxin~ated  b y  ~Jal)ssi:il~-SigIllc)i(l fi]tcr mcdlod
dcscrihcct in scc[ion  3.3.

~~@Q_
‘1’hc  tolcrancc and clcarancc al u}]~~er  hole of 1’4 arc corll-
]mtcd for a sLlbassen~b]y consisting of par[s, }>1, 1)3,  and 1)4
of l;ig. 1. in t}lis sirllLllation,  clcarancc was colnpLltcd  twice
for two different diameters and dimension tolc.ranccs  of
l~cg and hole: 1.4010,05 and 1.8(H 0.05, and 1.6H0.001
and 1.67~  0.001. Note that all mating features have the
saliw positio]l  Iolclancc.s  as shown in I~ig, 4(a). “1’hc sirrlw
lation rcsLllts  ale rcporled.  ‘1’hc tolerance ellipsoid is

[1([0.123, 0.028], 09s ‘OsO ),
0.30 (r 95

for (axis lengths, rotation lllatl~ix).  ‘1’hc clcalance. ellipsoids
ate

[1([ 1.523, 1.124], 099001 , [0.300, 0.221]) and
-001 0,99

II([0.1 S4, 0.092], ’94 ‘ox~ , [0.066, 0.039]),
1)33 0,94

for (axis Icngttls,  ~otation lllatl ix, 1 angcs)  for IarSe and
slnall c}calances respectively. ‘1’lm l-csLllts show that tile
firsl sinlLrlation has lnuch lalgcr clcarancc than tolclancc,
m it should  bc, since c]car:inccs were II ILIC}I ]atg, cr than to-
Clanccs, }lc)wcvcr,  ttm s e c o n d  silnulation has noliiinal
clearance that is closer to tolcrancc.. No[c. tlmt the toler-
ances CO)tiC frolll every mating fcatLllc in lhc chain,
wllcrcas [lie clearances corl]c from every Imir of rtlating
features.
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Figure 10: Intersection operation.

5.2: ]%rallcl  chain

A parallc] chain (1’-chain)  is a minima] loop, i.e. no subset
of its noclcs can fm [n a lcrop, in a feature gl aph. 7’o crm~-
pulc the propagation of tolerances and clearances of a P-
chain, we hypothetically cut (bc ~-chain at M-node, and
forlll  two S-chains, S~l and S(’2. }Icrc, the clcarancc  of
M-node rllrrs(  be added to the S-chain which has the
selected 1~-node for the propagation. I~roln the results of
S~l and s~2, a solution for p-chain  can bc calculated
using d~c intcmection  operation, which will be e.xplainecl
next.

‘1’he method is dcscribcd using J;ig. 10. I C[’S assurilc
t t ]at 1’1  iilld 22 arc the tolerances of SC 1 ancl S~2, rcspcc-
tivc]y, as shown in l:ig. IO(a). With  normal distribLltion,
rando]])ly  gcnmatc one sa[nplc from 3’1 ancl OriC from ‘1’?,
whmc ttm centers of “1’1 and “1’2 arc locatccl at the origin of
a coordinate f[allle. ‘1’hcse  samples, p] and p2, denote
inslances  of tolcrmrcc accrrnlulation of Sr21 a n d  S~2,
rcs~mctive.ty. Next, randomly generate clearances, ~ 1 and
~?, f]on) cleararrccs and ranges  of S~;l ancl Sr22. ~1 and
{:2 denote instances of clearance accumulation of SC 1 and
S~2, Icspcctivcly.  1 ,oc.atc ccmtcls of ~ 1 and ~2 on p] and
p?, rc.spcctivc]y,  as shown in I;ig. IO(b). l’hen, the inter-
section of ~ 1 and ~2 is conlputcct.  ‘l’his  intersection area
and the center point, C and f rcspcctivcly,  arc the clcarancc
and tlic tolm ancc of onc instant.c of a I’-cbain. By repeat-
ing tlIc. above process many tirncs, a distribution of ?’s, as
well as C’S, can bc forlncd. ‘1’hcse  clistribuliorrs arc approx -
ilnatc.d using mctlmds  dcscribcd in sections 3.2 ancl 3.3.
Note that the location of f rcrnain the salne, but tile center
of C n)us( bc located al tllc origin of a coordinate. fianw as
shown in };igs.  IO(C) and (d).

‘1’bc asscrnblability  of a P-chain can bc conjpLIIcd by
dividing the. nulnbe.t of successful trials by tlm total nurli-
I)cr of wials. An assclllb]y is assulncd successful if ~1 and
[Z’ intclscct, or C is not elnpty

Ihmnl)k 2,
A subassembly, cmnposcd  of PI, 1’2, and 1’3, forlns  a l’-
cllain. ‘Iko S-chains, S(1I and SC2, arc forlncd  by hypo-
thctical]y cu((ing  the l’-chain bctwccn  P2 and 1)3.

‘IWO siInulation results ale shown using two different

,4, ,,, .7 ,.,

Figure 11: Tolerance and clearance of P-chain.

cliarnctcrs for pc.gs and holes as in cxall~plc 1. With la.rgcr
clcaranccs,  the tolerance cllipsoicl is

[ 1([0,078, 0.121], -074 -06G ),
066 -0.74

and the clearance e.tli])soid is

11([0.203, 0.320], 071070 , [0.095,o.150]).
-0.70071

‘1’his result is plotted ii l;ig. 11, wbcrc ‘.’, ‘x’, and ‘*’ arc
plots of maximum, nmninal,  and Ininirnum clearances,
rcspcc.tivc]y, and ‘-t’ is a plot for the. to]crancc. ‘t’he asscnl-
b]ability is equal to 1. With  snlaller clcaranccs, the tolcr-
ancc. ellipsoid is

[1([0.014, 0.023], 082 0s7 ),
-0570.82

and tl]c clcarancc cllit)soid is

[1([0.013, 0.024], ’73067 , [0,007, 0.0]2]),
-0670,73

‘J’hc assclllblabili[y  is equal to 0.946.

S.3: Multi chain

A multi chain (M-chain) is ccrmposcd  of two or rtiorc J’-
cllains. ‘1’o ccmpute the propagation of a M-chain, wc pro-
pose a systematic approach. ‘l’hat is, give.n a base node, 11-
rrocle., and a goal node, (i-node, M-chain can be solved
recursively in tcrltls of S-chains and I’-cllains,

“I”IIc  rnclhod is illustrated using Itig. 12. “1’hc M-chain
consists c)f two l’-ctlains, CtlI’1 and CIII’2, as Showw in I;i~.
l?(a). };itsl, }’4 is selcctcd as a ~T-node. “1’her), ~hI’1 is cLit
at 1i3, wtiich is atlacbcci tc) ~j-noclc, to fol-]i]  two S-chains,
~lIS 1 and ClS2,  as shown in I“ig. 12(b). (1~1’1 canno[ he
solvecl until (’111’2  is solved. I’hat  is, tolerances and clear-
ances at 1’2 and 1)3 lnust bc computed frolll  Chl>2. Since
(’hl’2 is just a P-chain, the solutions  can bc colllputcd eas-
ily. Note. that, a M-chain lnay still bc a h4-chain  with OIIC
Icss }’-cliain aflel cuttinF, one I’-chaitl,  the above step can
be r-ecutsivc]y appliccl to a ncw M-chain. The result of
C’tll’2 is pro~)agalcd  to 1:3 1 ttlou,gh  CIISI frorll 1’3. Simil-

arly,  the solution jnopa~atc.s  to 1;32 ftom 1’?. J ,as[ly, the
intclscction operation is applied to the rcsulls  of CllS 1 and
chs2.

‘J’hc (irnc cmnplcxity  of  hf-clmin  al~,ol itl]lll in  tllc
woIst  case is 0 ( 2 ’1), wl]crc  n is tlm is ttlc nurnhcl” of l’-
clmins it] a M-ctlain. In the worst case, hi-chain is a conl-

plctc g[aptl atld n is [)(nl~),  wlmc  ~ji is the null)bcr of parts
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Figure 12: M-chain propagation,

in a M-chain, II requires at least three nodes to form a P-
chain. There are

( )
~ feasible P-chains. I“hc recursive

process of M-chain algorithm solves two M-chains with
onc P-chin less than the previous step. On the way back
from the recursion, it solves the P-chain. ‘1’hcrefore, there
arc 0(2n) P-chains to be solved.

6: Asscmblabi]ity

‘h assentblabili(y  of an assembly can be measured from
the. prociuct of assernblabilities of all P-chains in a M-
chain. If thrxc are n P-chains in a M-chain, assemblability
measures ofn P-chains are multiplied.

lhc. probability of successfully adjusting a part fea-
ture to iis nominal pose can be measured statistically using
Monte-(hrlo  simulation. For exaniplc, N samples  are ran-
dorllly  and normally generated from the tolerance ellipsoid
of a M-chain. l’hen, ~ clearance ellipsoids are generated
ranciornIy.  Now, count the tolerance samples, ~~, that
intersect with a clearance ellipsoid for ~ clearance ellip-
soids. Using the equation,

M

(x)N i /(itfx N)

i=r

ttlis measure can be calculated+

7: Conclusion

‘lolcrarm  affects not only the functionality and nlanufac-
turability but also the assemblability  of a product. For the
asselllblability analysis, we have proposed a statistical rep-
resentation of tolerance and clcararrce, Tolerance is reprc-
scntcd by an ellipsoid, and clearance is represented by an
cllipsoici  and a range, Gaussian distribution is assured for
tolerances. Moreover, Monte-Cltrlo method is used with
Gaussian distribution, Ciaussian-SigrlIoid distribLrtion, and
C%i-Squa[c  c~r-or reduction schcrne  to approximate the tol-
er ancc and clearance. Algorithrrls  are. proposed for serial,
par allel, and M-chains fcm the propagation of tolerances
ancl clearances. We have shown that clearances play an
inlportant  role in tile assernblability evaluation, because
they can bc used to conlpcnsatc  for tolerance, although
clearances may cause instability of a product if clearances
arc lar~e.
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